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NECESSARY AND SUFFICIENT CONDITIONS FOR
OPTIMAL SEARCH PLANS FOR MOVING TARGETS*t

LAWRENCE D. STONE
Daniel H. Wagner, Associates

Let {X,, ¢ > 0} be a stochastic process representing the motion of a target in Euclidean
n-space. Search effort is applied at the rate m(#) > 0 for 0 < ¢ < 7, and it is assumed that this
effort can be distributed as finely as desired over space. We seek an optimal search plan, i.e.,
an allocation of effort in time and space which maximizes the probability of detecting the
target by time 7. When the detection function is concave, theorem 1’ of this paper gives
necessary and sufficient conditions for an optimal search plan for a class of target motion
processes {X;, ¢ » 0} which includes virtually any reasonable model of target motion.

In the special case of a discrete-time target motion process and an exponential detection
function, the necessary and sufficient conditions have the following intuitive interpretation:
Fort=0,1,2,..., T, let g be the probability distribution of the target’s location at time ¢
given that the effort at all times before and after ¢ failed to detect the target. The optimal plan
allocates the effort for time ¢ so as to maximize the probability of detecting a stationary target
with distribution g, within the effort constraint m(?). This special case is a generalization of
Brown’s (1978) result for discrete time and space target motion.

1. Introduction. In this paper we find necessary and sufficient conditions for a
search plan to maximize the probability of detecting a moving target by time T under
constraints on the rate at which search effort may be applied. These conditions apply
to a very wide variety of moving target problems in continuous or discrete time and
continuous or discrete space. Many previous results concerning necessary and
sufficient conditions for moving target problems appear as special cases of the results
obtained here. In particular our results include the necessary conditions obtained by
Hellman (1972) for diffusion processes and by Saretsalo (1973) for continuous time
and space Markov processes, and they extend those results by showing the conditions
are also sufficient. The results of Stone (1977) and Persiheimo (1976), (1977) for
continuous time generalized conditionally deterministic motion are special cases of
the results in this paper as well as those of Brown (1978) for target motion in discrete
time and space.

However, the results of this paper go far beyond the previous results in this area.
When the detection function is concave theorem 1’ of this paper gives necessary and
sufficient conditions for an optimal search plan which apply to any target motion
process with Borel measurable sample paths and for which the expectation (con-
ditioned on the target passing through a point y at time ¢) which defines D in (3.2) or
(3.13) is well defined. Both of these restrictions are very mild, and virtually any
reasonable stochastic process which could be used to represent target motion should
satisfy them. The major restriction on the results given in this paper is that the
searcher must be able to distribute his effort as finely as he desires over space, i.e.,
effort must be infinitely divisible in space. This prevents the direct application of these
results to problems such as the search of one submarine for another where the
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searcher is required to follow a smooth path and has limited control over the manner
in which search effort is distributed about the path.

In contrast to the generality of theorem 1', previous results are limited to exponen-
tial detection functions and special types of Markov processes (Hellman (1972) and
Saretsalo (1973)) or to very special types of target motion like conditionally de-
terministic motion (Stone (1977) and Persiheimo (1977)), or to discrete space and time
target motion coupled with an exponential detection function.

In the case of a discrete time target motion process and ar exponential detection
function, the necessary and sufficient conditions have the following simple intuitive
interpretation which provides insight into the nature of the optimal allocation and
which has provided the basis for efficient numerical calculation of optimal plans for
discrete time and space Markov processes (see Brown (1978)). Suppose * is a plan
that maximizes the probability of detection by time 7. For r =0, I,..., T, let g, be
the probability distribution of the target’s location at time ¢ given that the search
effort at all times other than ¢ failed to detect the target. Then *(:, ¢), the allocation
of effort at time ¢ under the optimal plan y*, is the same as the allocation of effort
which maximizes the probability of detecting a stationary target with probability
distribution g,. This observation was first made by Brown (1978) for the case of
discrete time and space target motion processes. Stone et al. (1978) gives examples of
the use of the above characterization to find optimal search plans for arbitrary
discrete time target motion processes. Washburn (1978) has generalized the necessary
conditions of Brown to a case where effort is not required to be infinitely divisible in
space and shown by example that the conditions are not sufficient when the assump-
tion of infinite divisibility is dropped.

In section §2 we state the optimal search problem that we are considering. The
statement of the search problem and the theorems are given in terms of a discrete time
and continuous space target motion model. Modifications required to apply the
results to discrete space or continuous time are noted after the results are stated. A
discrete time model is used because it is most amenable to numerical calculation and
because discrete time allows us to present proofs that are considerably simpler than
those required for continuous time. A continuous space is chosen for the basic
presentation because it illustrates that the results are not simply applications of the
Kuhn-Tucker theorem. In addition, the discrete-space results are usually transparent
once the continuous-space results have been obtained.

In theorm 1 of §3 we prove that conditions (3.4), stated below, are necessary and
sufficient for the optimality of search plan in discrete time and continuous space when
the detection function is concave. In the case of continuous time we observe that the
necessary conditions (3.4) are true but their proof is not a simple extension of the one
given in theorem 1. Instead the reader is referred to the proof of theorem 5.2 of Stone
(1977) which may easily be applied to proving this result. However, the proof in Stone
(1977) is very technical involving a demonstration of the existence of a measurable
selection from a function space. This difficulty is not present in discrete time. In
theorem 1 of §3 we present a unified statement of the necessary and sufficient
conditions which applies to any combination of discrete or continuous space and
time.

§4 considers the special case of a discrete time target motion process and an
exponential detection function. For this case we give a simple proof of the necessity
result which relies only on the necessary conditions for an optimal search plan for a
stationary target.

2. Problem statement. Let {X,; r=0,1,..., T) be a discrete time stochastic
process where X, takes values in Euclidean n-space, Y, and T is a positive integer. The
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random variable X, represents the target’s position at time ¢. We assume that
(X9, X)» - . ., X;) has a joint density function p defined on Y7*!. Let p, be the density
of the marginal distribution of X, forr=0,1,..., T.

Let y(-, 1) be the allocation of search density at time 7 for r =0, 1, ..., T. That is,
V(. ) is the effort density applied to point y at time 7 under plan y. We assume that
¥ is a member of the space F of real-valued Borel functions f defined on Y X
{0, 1,..., T} such that

fUUJN@<w fort=0,1,..., T,
Y

T
[ fll= 2 ess sup|f(y, )| < co.
=0 )YEY

Then F is a linear space with norm || f|| for f€ F. Let F* = {f € F: f > 0}, and let
m(t) > 0 be the amount of effort which is available at time ¢ for r=0,1,..., T.
Define

‘I’(m)={4fEF+ : j;t[/(y,t)dy=m(t)fort=0, 1,2,....T}. .

Let X(w, - ) denote a sample path of the process X. If the target follows this path
and we allocate search effort according to the plan v, then

b( grow(X(w, 9 s))

is the probability of detecting the target by time 7. The function b is called a
detection function. It relates the accumulated search density along the target’s path to
probability of detection. Letting E indicate expectation over sample paths, we have
that the overall probability of detection by time T is

P[Y]=E b( §TO¢(X(w, ), s))]-

In the sequel we shall usually not indicate the dependence of X on w.
The optimal search problem under consideration is to find ¢* € ¥(m) such that

Plyr]= max{PT[xp] Y € ¥(m)). (22)
A plan y* € ¥(m) that satisfies (2.2) is called T-optimal within ¥(m).

3. Necessary and sufficient conditions. In this section we find necessary and
sufficient conditions for a plan ¢* to be T-optimal within ¥(m) when the detection
function b is concave. The conditions involve the Gateaux differential of P, which we
will now define and calculate under the assumption that for some finite x > 0, the
derivative b’ of b satisfies 0 < b'(z) < k forz > 0.

Gateaux differential of P;. Lety, he€ F. If
, — |
Pi[y, h] =hm = (Pr[¥ + eh] — Pr[y])
exists, then Pr[y, h] is the Gateaux differential of Py at in the direction A,

For ¢y € F*, let K(y) be the cone of directions A such that ¢ + 6h € F* for all

L



434 LAWRENCE D. STONE

sufficiently small nonnegative values of 8. Now for ¢ € F* and h € K(y),

T T
= b( go‘p(xs, s) + en(X,, s)) — b( §0Wv s))“.

P;[¢,h]=£i_1)1(1)E[ :

Since the integrand is bounded by «|{h||, we may invoke the dominated convergence
theorem to obtain

T T
Py, h]=E b'( S v, s)) S h(X, r)}

T T

E[ > b’( v(X,, s))h(X,, t)}. 3.1
t=0 s=0

Let p, denote the marginal density for X,, and let E,, denote expectation conditioned

on X, = y. Then for y € F* and h € K(¥),

PTI'["P’ h] = § fYEyt

=0

T
b’( E,'“X” S)”h(y, 0p(y) dy-

Note that we have expressed P;[y, -] as a linear functional on K(¢). Define

T
Dr(¥,y, 1) = E, b’( > x]x(Xs,s)) p(y) fory€F*,yeY, t=0,1,...,T.
s=0
(3.2)
Then
T
Piw k)= 3 [ Drhys 0h(, ) dy forh € K(¥). (33)

Necessary and sufficient conditions. We now state and prove necessary and
sufficient conditions for T-optimality. Let &, be Euclidean T-space and &; be the
nonnegative orthant in & ..

THEOREM 1. Suppose that b is concave and that it has a bounded nonnegative
derivative, b'. Then * is T-optimal within ¥(m) if and only if there exists
AO), ..., M) € &7, such that

D,(¢* y, )=A() if¢*(y, 8) >0
<A ifYy*(y,1)=0 forae.y€Y,r=0,1,...,T. (34)

Proof of sufficiency. The proof of sufficiency follows that of theorem 8.4.1 in Stone
(1975). The essence of this argument is due to D. H. Wagner.

Observe that the concavity of b implies that P, is a concave functional on F*. We
now proceed to use an argument by contradiction. Suppose that y* € ¥(m) satisfies
(3.4) and that there is a ¢ € ¥(m) such that P [¢] > P [y*].

Since Py is concave we have for C < 6 < 1,

PT[‘V +0(y - ‘P*)] - PT[‘I’*] = PT[(I =0+ W/] - PT[‘P']
> (1= 0)P[y*] + 0P [¢] — Pr[y*] = 0(P[¥] — Pr{v*]).
It follows that
Prly*, ¢ —y*] > P[y] — P y*] >0. (3.5)
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However, by (3.3) and (3.4) we have

T
PLvy=¥]= 2 [ D0y 0l 0.0 =00 0]

T

/ Dr(¥* y O[¥(» ) = ¥* (1 0] &y
1=0"{y :¥*(». >0}

+3

J Dr(#*, . O ) = ¥* (3 0] &y
t=0"{y 4"y, =0}

T
<3 [M0¥ 0 - v 0] dy=0, (3.6)
t=0"Y
where the last equality follows from the fact that
f¢(y, 1) dy=f1p*(y, £)dy=m(t) fort=0,...,T.
Y Y

However (3.6) contradicts (3.5) and sufficiency is proved.

Proof of necessity. Suppose §* is optimal within ¥(m). Since b is increasing, we
observe that ¢* is also optimal within the larger class obtained by replacing the
equality constraint by an inequality constraint in the definition of ¥(m) in (2.1).

Define

L) =Bl f] = 20| [ J0 0 dy = m(r)| forf EFT.y € Bry

By theorem 1 of Luenberger (1969, p. 217), there exists A € &7, such that L,[y*]

= maX,ep+ L[yl
For f€ F* and h € K(f), the Gateaux differential L)[f, h] of L, at f in the

direction of & exists and is a linear functional of 4. In particular by (3.3)
T T
LIf Y= 3 [Dr(fy 0h(n, 0 dr= SN [y dy. (37
=07Y =0 Y

Following Luenberger (1969, p. 227), we observe that since L[{*] = max, ¢ g+ L[{], we
have for any y € F*

m L (L[4 + (v = ¥9)] - L[v*]) <0
Thus
Li[y* ¢ —y*] <0 fory €F*, (3.8)
Setting ¢ = 3 *, we obtain
0> Li[y* —3v*] = -4 L[y v*], (39)
while setting = 2y* yields

Li[y* y*] <. (3.10)
(3.7), (3.9), and (3.10) imply
T
S [ 1Dy, ) = MO]Y*(y, 1) dy=0, (3.11)
1=0"Y
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while (3.8) and (3.11) imply
T
S [1Dr* 2, ) - MO ¥(r, ) dy< 0 forally € F*. (3.12)
=07Y

(3.12) implies that Dy(y*, y, f) < A(¢)forae.y€ Y, t=0,1,..., T, and (3.11) im-
plies Dr(y*, y, )y =N forae.y € Yandt =0, 1,..., T such that y*(y, 1) > 0. The
necessity of the conditions in (3.4) follows, and the theorem is proved.

In the following paragraphs we discuss extensions and specializations of theorem 1.

Discrete space—discrete time. Theorem 1 and the proof given above also hold
when the search space Y is discrete provided one interprets p,(y) in (3.2) as the
probability that X, = y.

Continuous time (sufficiency). The obvious analog of the sufficiency part of theo-
rem 1 holds for continuous time provided the target motion process {X,; 0 < ¢t < T}
has Borel measurable sample paths, the conditional expectation

Ey,[b’( fo WX, s) m)}

is well defined, and we take
T
Dy(Y,y, 1) = Ey,[b’(f V(X 5) ds)]p,(y) fory€e F*,yeY,t E[O, T]. (3.13)
()

The proof of this assertion parallels the sufficiency proof in theorem 1. The Borel
measurability of the sample paths is needed to guarantee that the integral
[T W(X,, 5) ds is well defined.

Continuous time-continuous space (necessity). The corresponding necessity result
for continuous time is more difficult to prove; its proof is not an obvious extension of
the one given for theorem 1. However by paralleling the proof of theorem 5.2 in Stone
(1977), one may show that the conditions in (3.4) are necessary with D, defined as in
(3.13). In fact that proof shows that for continuous space the necessity result holds
when the concavity assumption on b is dropped. The proof in Stone (1977) also allows
one to add a constraint of the form 0 < y(y, f) < B for some positive number B with
a corresponding change in the conditions in (3.4).

Observe that when b(z) = 1 — e %, we have, for continuous time,

T
Dr(¥:,1) = Ey,[exp(— [ vx. s ds)}p,(y)- (3.14)
If {X,, s > 0} is a Markov process, then one can show that

Dr(4,y, 1) = fX F(x, 0, y, t, Y)R(p. 1, T, $)po(x) d, (3.15)

where under plan {, r(x, 0, y, ¢, }) is the probability density that at time 7 the target is
located at y and is undetected given it was at x at time 0, and R(y, ¢, T, ¢) is the
probability that if the target is at pc .t y at time ¢ it will be undetected in the interval
[¢, T]. Because of the Markov nature of the process, r{x, 0, y, t, Y)R(y. t, T, {) is the
probability density that a target starting at x at time 0 will pass through the point y at
time ¢ and remain undetected throughout [0, 7']. The integral on the right of (3.15)
averages over the distribution. of the target’s position at time 0 to obtain the
probability density that the target passes through point y at time ¢ and remains
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undetected throughout [0, T']. Now

exp(—— fOTxp(X(w, 5), §) ds)

is the probability of failing to detect the target by time 7 given it follows path w. Thus
the right-hand side of (3.14) is simply the probability density of the target passing
through point y at time ¢ and failing to be detected by time 7. From this observation
and the above discussion, (3.15) follows.

Thus theorem 5.1 of Saretsalo (1973) and the theorem of Hellman (1972) are special
cases of the necessity result obtained in this paper. In fact, the specialization to
Markov processes given here is stronger than the result in Saretsalo (1973) in the sense
that no assumptions concerning the continuity of the transition function are required.
In addition, we have proved sufficiency.

It also follows that the necessary and sufficient conditions obtained in Stone (1977)
and Persiheimo (1977) are a special case of the conditions found in this paper. In
particular, one can show, in the notation of Stone (1977), that

o p(na' () w)
p(») —fﬂ m y(dw),

and

Ey,[b’( fo WX, 5) ds)]

_ 1 f P("w_tl(y)’ w)
P() Yo 3(n5' (p), w, t)

b [ "vu[n10)).5) s r(ao,

so that Dr(y, y, 1) = E, [b'(f TY(X,, 5) ds)] p,(p) coincides with the definition of D, in
Stone (1977) and the conditions in that reference and in Persiheimo (1977) are a
special case of conditions (3.4) provided one makes the obvious changes for the bound
B on effort density which is allowed as a constraint in Stone (1977).

Continuous time-discrete space (necessity). The necessity part of theorem 1 also
holds for a continuous time and discrete space motion process. Again the proof is not
a simple extension of the one given for theorem 1, but one can parallel the proof of
theorem 5.2 in Stone (1977) to obtain the result. However, in the case of discrete
space, the assumption of concavity for b is required in order to guarantee the
necessity of conditions (3.4). The concavity is needed on p. 464 of Stone (1977) where
one invokes a Lagrange multiplier result to guarantee the existence of A(¢) to satisfy
(5.9) at the bottom of that page. In the case of a discrete search space one must invoke
a result such as corollary B.1.2 of Stone (1975) which requires the concavity of the
detection function b.

Unified statement of results. Most of the above results can be consolidated into a
single theorem statement provided we make the appropriate identifications for Dy, p,,
and [0, T']. Specifically D, is given by (3.2) when time is discrete and by (3.13) when
time is continuous; p, is the probability density function for X, when Y is Euclidean n
space, and p,(y) = Pr{X, =y} when Y is a discrete space. For continuous time F,
F*, ¥(m), and P, are defined as in §2 but with integrals replacing summation. In
discrete time we understand [0, T]= {0, 1, ..., T} while in continuous time [0, 7]
has the usual meaning.
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THEOREM 1'.  Suppose b is concave and that it has a bounded nonnegative derivative
b’. Assume that the sample paths of {X,, 0 < t < T} are Borel measurable and that Dy
is well defined for (y, 1) such that p,(y) > 0. Then * is T-optimal within ¥(m) if and
only if there exists X : [0, T]1—[0, o) such that

Dr(y*y: ) =M1 T ¥*(y,)>0
SN if y*(p, £)=0 forae. (y, 1)€Y X[0, T]. (3.16)

In the case where the search space is &, , the necessity of conditions (3.16) remains
true when the concavity assumption on b is dropped. In discrete time, the sample
paths will always be Borel measurable, and Dy will be well defined for (p, ¢) such that

p(»>0.

4. The special case of an exponential detection function. When the detection
function is exponential, we may prove the necessity of the conditions in (3.4) in an
elementary manner which requires the use of only the necessary conditions for an
optimal stationary target search. The use of the exponential detection functions also
allows us to consider the possibility that the detection capability of the search sensor
varies over the search space. Specifically we shall assume that for each point y € Y,
there is a number W(y) which characterizes the detection performance of the sensor
in the neighborhood of y in the sense that if the target is located at y and z effort
density is placed there, then 1 — exp(— W(y)z) is the probability of detecting the
target. Classically W(y) is called the sweep width of the sensor when operating in the
neighborhood of y. For this case

Pi[y]=1-E exp(— ﬁ W (X,)¥(X,, s))] fory € F*, 4.1)
s=0

and Dy, the kernel of the linear functional P7[y, - ], in (3.3) becomes

T
Dr(¥,y, )= E, exp(— §0 W(X ) (X, S)) PNV ()

forye F,yeY,t=0,1,...,T.

THEOREM 2. Suppose the detection function is exponential and W is bounded. Then
y* is T-optimal within ¥(m), if and only if there exists (MO0), . .., MT)) € &1, such
that for t =0,..., T and for ae. y €Y,

E"{e"p( - S WO, s))}p,(y) W(p)e™¥O¥0)

=M1 i ¥*(p1)>0
< A(H) if Y*(y,t)=0. 4.2)

PRrOOF. Since P, as defined in (4.1) is a concave functional, the sufficiency proof
for theorem 1 applies here also.
To prove the necessity part of the theorem, let

gy = Ey,[exp(— El W(X (X, S))}p,(y) forye ¥,t=0,1,..., T,

and
G(’)=fgl(y)dy fort=0,1,...,T.
Y



CONDITIONS FOR OPTIMAL SEARCH PLANS FOR MOVING TARGETS 439

Suppose that for some ¢ (4.2) fails to hold on a set of positive measure in Y.
Dividing g, by G(¢) to obtain a probability density g,, we observe that *(-, ¢) fails to
satisfy the necessary conditions of corollary 2.1.7 of Stone (1975) for ¢*(-, ) to
maximize probability of detection for cost m(?) for a stationary target with probability
density g,. Thus ¢*(-, ¢) is not optimal for cost m(¢) for this stationary target problem.

For nonnegative Borel mea  ole functions f defined on Y, let

0L/ = [ 21 = e™*97) .

Then since Y*(-, ) is not optimal for cost m(f), we may find an f* > 0 such that
[y f*(y) dy = m(1) and Q[ f*] > Q[y*(-, 1)]. Observe that

1— P y*] = fyg,( »exp(— W(yW*(y, 1)) dy

=1-G(QM¥*(.n]>1- GHQ[ f*].
Thus by taking

_ Y*(y,5) fors # 1,
‘”y’s)‘{f*(y) fors =1,

we have ¢ € ¥(m) and P,[y] > P,[}*] which contradicts the assumption that * is
T-optimal within ¥(m). Thus (4.2) must hold and theorem 2 is proved.

From the definition of g,(y) and G(¢), one can see that g, = g,/ G(?) is simply the
probability density for the target’s location at time ¢ given that it was undetected by
the search applied at all times other than t. Let M(#) = A(¢)/G(?) fort=0,1,..., T.
Then conditions (4.2) become

EOW()e POVOD =X(1) if y¥(p, 1) >0
<A@ ity (p 1) =0,

which are precisely the necessary and sufficient conditions for ¢*(:, ) to be an
optimal allocation of effort for a stationary target with probability density g,. Thus the
optimal moving target plan can be characterized in terms of optimal stationary target
plans. That is at each time =0, 1, ..., T, the optimal plan y* allocates the effort
available at time ¢ so that y*(-, f) maximizes the probability of detecting a stationary
target with probability density g,.

This observation was first made by Brown (1978) for the case of discrete time and
space target motion and it forms the basis of the numerical calculation of optimal
search plans reported in his work. The algorithm has the following form. When no
effort has been applied, g, = p,, the initial probability distribution for the target’s
location at time 0. One begins by allocating the effort optimally for p, and then
computing the posterior distribution g, for the target’s location at time 1 given failure
to detect at time 0. Suppose that one has calculated an allocation of effort for
s=0,1,...,7— 1 Then one calculates g, the probability distribution for the target’s
location at time ¢ given failure to detect by time ¢ — 1, and allocates the effort for time
t to be optimal for . When one reaches time T, he has computed the myopic search
plan, i.e., the plan which at each time step allocates its effort to maximize the increase
in detection probability given the effort which has been allocated up to that time.

At this point one begins the second pass by returning to time 0 and calculating 2,
the probability density for the target’s location at time O given that the effort which
has been allocated for times ¢t =1, . . ., T fails to detect the target. Usually 2, will not
be the same as p,, the initial target location density. The effort allocation for time 0 is
readjusted to being optimal for g, This process is repeated for times t=1,..., T.
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This constitutes the second pass. One continues making passes until some stopping
criterion is reached. In Brown (1978) it is shown that one can come as close to the
optimal plan as he wishes by making a large enough number of passes.

The main obstacle to applying this method of calculating optimal plans is in finding
efficient methods of computing g, for r =0, ..., T. This obstacle has been overcome
very efficiently by Brown in the case of a discrete time and space Markov process.
Stone et al. (1978) presents a numerical optimization method which can be applied to
any discrete-time target motion process which can be simulateC on a computer.
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